quinta-feira, 24 de setembro de 2015

ENEM - A MATEMÁTICA DO ENEM

http://ultranegociosonline.com/100%/passenoenem
Desde o princípio da aplicação do ENEM, ocorreram alterações no exame, e a mais evidente é a mudança do nome das matrizes dos conteúdos. A partir dela, as perguntas, antes agrupadas em disciplinas, passaram a ser separadas por grandes áreas. 

Questões sobre as disciplinas de História, Geografia, Filosofia e Sociologia são elencadas na área de Ciências Humanas; as de Biologia, Física e Química, na área de Ciências da Natureza; e as disciplinas de Português, Literatura, Línguas, Artes e Educação Física, na área de Linguagens e Códigos.

Mas e a Matemática, onde foi parar? Ela possui uma área destinada somente para ela: Matemática e suas Tecnologias. Esta área abarca 45 questões do exame e, de acordo com o MEC, compreende sete competências, que devem ser trabalhadas no decorrer do Ensino Médio. 

Vale ressaltar que mesmo a Matemática tendo uma área destinada a ela, ainda assim ela tem grande presença nas outras áreas, em forma de gráficos e tabelas, dados estatísticos, expressões e fórmulas que representam fenômenos.

Estas competências podem ser verificadas no edital do ENEM. Elencaremos aqui as competências relacionadas à área de Matemática e suas Tecnologias:

• Construir significados para os números naturais, inteiros, racionais e reais;

• Utilizar o conhecimento geométrico para realizar a leitura e a representação da realidade e agir sobre ela;

• Construir noções de grandezas e medidas para a compreensão da realidade e a solução de problemas do cotidiano;

• Construir noções de variação de grandezas para a compreensão da realidade e a solução de problemas do cotidiano;

• Modelar e resolver problemas que envolvem variáveis socioeconômicas ou técnico-científicas, usando representações algébricas;

• Interpretar informações de natureza científica e social obtidas da leitura de gráficos e tabelas, realizando previsão de tendência, extrapolação, interpolação e interpretação;

• Compreender o caráter aleatório e não determinístico dos fenômenos naturais e sociais e utilizar instrumentos adequados para medidas, determinação de amostras e cálculos de probabilidade para interpretar informações de variáveis apresentadas em uma distribuição estatística.


Analisando cada uma dessas competências, vemos que a prova de matemática trata-se de uma avaliação totalmente contextualizada e interdisciplinar. Em outras palavras, a disciplina deixou de ser um instrumento voltado somente para a matemática, passando a ter sua aplicabilidade em situações sociais. 

Para isso, a prova exige uma capacidade que vai além do conteúdo, fazendo com que o aluno desenvolva um raciocínio lógico acerca dos problemas levantados nas questões.

Sendo assim, fica evidente o principal objetivo do ENEM, que é o de reformar o Ensino Médio, mudando a forma como os colégios abordam o seu ensino, atualmente voltado para vestibulares que focam apenas o conteúdo. 

O ENEM busca promover uma avaliação que incentive os colégios a abandonarem esta educação conteudista, para que assim possam ser formados alunos que compreendam os fenômenos, resolvam problemas e desenvolvam um raciocínio lógico por meio de reflexões acerca destas competências.

História da Matemática [compreenda agora]

http://ultranegociosonline.com/genio/matematica
Por volta dos séculos IX e VIII A.C., a matemática engatinhava na Babilônia.

Os babilônios e os egípcios já tinham uma álgebra e uma geometria, mas somente o que bastasse para as suas necessidades práticas, e não de uma ciência organizada.

Na Babilônia, a matemética era cultivada entre os escrivas responsáveis pelos tesouros reais.

Apesar de todo material algébrico que tinham os babilônios e egípcios, só podemos encarar a matemática como ciência, no sentido moderno da palavra, a partir dos séculos VI e V A.C., na Grécia.

A matemática grega se distingue da babilônica e egípcia pela maneira de encará-la.

Os gregos fizeram-na uma ciência propriamente dita sem a preocupação de suas aplicações práticas.

Do ponto de vista de estrutura, a matemática grega se distingue da anterior, por ter levado em conta problemas relacionados com processos infinitos, movimento e continuidade.

As diversas tentativas dos gregos de resolverem tais problemas fizeram com que aparecesse o método axiomático-dedutivo.

O método axiomático-dedutivo consiste em admitir como verdadeiras certas preposições (mais ou menos evidentes) e a partir delas, por meio de um encadeamento lógico, chegar a proposições mais gerais.

As dificuldades com que os gregos depararam ao estudar os problemas relativos a processos infinitos (sobretudo problemas sobre números irracionais) talvez sejam as causas que os desviaram da álgebra, encaminhando-os em direção à geometria.

Realmente, é na geometria que os gregos se destacam, culminando com a obra de Euclides, intitulada "Os Elementos".

Sucedendo Euclides, encontramos os trabalhos de Arquimedes e de Apolônio de Perga.

Arquimedes desenvolve a geometria, introduzindo um novo método, denominado "método de exaustão", que seria um verdadeiro germe do qual mais tarde iria brotar um importante ramo de matemática (teoria dos limites).

Apolônio de Perga, contemporâneo de Arquimedes, dá início aos estudos das denominadas curvas cônicas: a elipse, a parábola, e a hipérbole, que desempenham, na matemática atual, papel muito importante.

No tempo de Apolônio e Arquimedes, a Grécia já deixara de ser o centro cultural do mundo. Este, por meio das conquistas de Alexandre, tinha-se transferido para a cidade de Alexandria.

Depois de Apolônio e Arquimedes, a matemática grega entra no seu ocaso.

A 10 de dezembro de 641, cai a cidade de Alexandria sob a verde bandeira de Alá. Os exércitos árabes, então empenhados na chamada Guerra Santa, ocupam e destroem a cidade, e com ela todas as obras dos gregos. A ciência dos gregos entra em eclipse.

Mas a cultura helênica era bem forte para sucumbir de um só golpe; daí por diante a matemática entra num estado latente.

Os árabes, na sua arremetida, conquistam a Índia encontrando lá um outro tipo de cultura matemática: a Álgebra e a Aritmética.

Os hindus introduzem um símbolo completamente novo no sistema de numeração até então conhecido: o ZERO.

Isto causa uma verdadeira revolução na "arte de calcular".

Dá-se início à propagação da cultura dos hindus por meio dos árabes. Estes levam à Europa os denominados "Algarismos arábicos", de invenção dos hindus.

Um dos maiores propagadores da matemática nesse tempo foi, sem dúvida, o árabe Mohamed Ibn Musa Alchwarizmi, de cujo nome resultaram em nossa língua as palavras algarismos e Algoritmo.

Alehwrizmi propaga a sua obra, "Aldschebr Walmakabala", que ao pé da letra seria: restauração e confonto. (É dessa obra que se origina o nome Álgebra).

A matemática, que se achava em estado latente, começa a se despertar.

No ano 1202, o matemático italiano Leonardo de Pisa, cognominado de "Fibonacci" ressuscita a Matemática na sua obra intitulada "Leber abaci" na qual descreve a "arte de calcular" (Aritmética e Álgebra). Nesse livro Leonardo apresenta soluções de equações do 1º, 2º e 3º graus.

Nessa época a Álgebra começa a tomar o seu sapecto formal. Um monge alemão. Jordanus Nemorarius já começa a utilizar letras para significar um número qualquer, e ademais introduz os sinais de + (mais) e - (menos) sob a forma das letras p (plus = mais) e m (minus = menos).

Outro matemático alemão, Michael Stifel, passa a utilizar os sinais de mais (+) e menos (-), como nós os utilizamos atualmente.

É a álgebra que nasce e se põe em franco desenvolvimento.

Tal desenvolvimento é finalmente consolidado na obra do matemático francês, François Viete, denominada "Algebra Speciosa".

Nela os símbolos alfabéticos têm uma significação geral, podendo designar números, segmentos de retas, entes geométricos etc.

No século XVII, a matemática toma nova forma, destacando-se de início René Descartes e Pierre Fermat.
A grande descoberta de R. Descartes foi sem dúvida a "Geometria Analítica" que, em síntese, consiste nas aplicações de métodos algébricos à geometria.

Pierre Fermat era um advogado que nas horas de lazer se ocupava com a matemática.

Desenvolveu a teoria dos números primos e resolveu o importante problema do traçado de uma tangente a uma curva plana qualquer, lançando assim, sementes para o que mais tarde se iria chamar, em matemática, teoria dos máximos e mínimos.

Vemos assim no século XVII começar a germinar um dos mais importantes ramos da matemática, conhecido como Análise Matemática.

Ainda surgem, nessa época, problemas de Física: o estudo do movimento de um corpo, já anteriormente estudados por Galileu Galilei.

Tais problemas dão origens a um dos primeiros descendentes da Análise: o Cálculo Diferencial.

O Cálculo Diferencial aparece pela primeira vez nas mãos de Isaac Newton (1643-1727), sob o nome de "cálculo das fluxões", sendo mais tarde redescoberto independentemente pelo matemático alemão Gottfried Wihelm Leibniz.

A Geometria Analítica e o Cálculo dão um grande impulso à matemática.

Seduzidos por essas novas teorias, os matemáticos dos séculos XVII e XVIII, corajosa e despreocupadamente se lançam a elaborar novas teorias analíticas.

Mas nesse ímpeto, eles se deixaram levar mais pela intuição do que por uma atitude racional no desenvolvimento da ciência.

Não tardaram as consequências de tais procedimentos, começando por aparecer contradições.

Um exemplo clássico disso é o caso das somas infinitas, como a soma abaixo:

S = 3 - 3 + 3 - 3 + 3...........
supondo que se tenha um nº infinito de termos.
Se agruparmos as parcelas vizinhas teremos:
S = (3 - 3) + (3 - 3) + ...........= 0 + 0 +.........= 0
Se agruparmos as parcelas vizinhas, mas a partir da 2ª, não agrupando a primeira:
S = 3 + ( - 3 + 3) + ( - 3 + 3) + ...........= 3 + 0 + 0 + ......... = 3
O que conduz a resultados contraditórios.

Esse "descuido" ao trabalhar com séries infinitas era bem característicos dos matemáticos daquela época, que se acharam então num "beco sem saída'.

Tais fatos levaram, no ocaso do século XVIII, a uma atitude crítica de revisão dos fatos fundamentais da matemática.

Pode-se afirmar que tal revisão foi a "pedra angular" da matemática.

Essa revisão se inicia na Análise, com o matemático francês Louis Cauchy (1789 - 1857), professor catedrático na Faculdade de Ciências de Paris.

Cauchy realizou notáveis trabalhos, deixando mais de 500 obras escritas, das quais destacamos duas na Análise: "Notas sobre o desenvolvimento de funções em séries" e "Lições sobre aplicação do cálculo à geometria".

Paralelamente, surgem geometrias diferentes da de Euclides, as denominadas Geometrias não euclidianas.
Por volta de 1900, o método axiomático e a Geometria sofrem a influência dessa atitude de revisão crítica, levada a efeito por muitos matemáticos, dentre os quais destacamos D. Hilbert, com sua obra "Fundamentos da Geometria" ("Grudlagen der Geometrie" título do original), publicada em 1901.

A Álgebra e a Aritmética tomam novos impulsos.

Um problema que preocupava os matemáticos era o da possibilidade ou não da solução de equações algébricas por meio de fórmulas que aparecessem com radicais.

Já se sabia que em equações do 2º e 3º graus isto era possível; daí surgiu a seguinte questão: será que as equações do 4º graus em diante admitem soluções por meio de radicais?

Em trabalhos publicados por volta de 1770, Lagrange (1736 - 1813) e Vandermonde (1735-96) iniciaram estudos sistemáticos dos métodos de resolução.

À medida em que as pesquisas se desenvolviam no sentido de achar tal tipo de resolução, ia se evidenciando que isso não era possível.

No primeiro terço do século XIX, Niels Abel (1802-29) e Evariste de Galois (1811-32) resolvem o problema, demonstrando que as equações do quarto e quinto grau em diante não podiam ser resolvidas por radicais.

O trabalho de Galois, somente publicado em 1846, deu origem a chamada "teoria dos grupos" e à denominada "Álgebra Moderna", dando também grande impulso à teoria dos números.

Com respeito à teoria dos números não nos podemos esquecer das obras de R. Dedekind e Gorg Cantor.
R. Dedekind define os números irracionais pela famosa noção de "Corte".

Georg Cantor dá início à chamada Teoria dos conjuntos, e de maneira arrojada aborda a noção de infinito, revolucionando-a.

A partir do século XIX a matemática começa então a se ramificar em diversas disciplinas, que ficam dada vez mais abstratas.

Atualmente se desenvolvem tais teorias abstratas, que se subdividem em outras disciplinas.

Os entendidos afirmam que estamos em plena "idade de ouro" da Matemática, e que neste últimos cinquenta anos tem se criado tantas disciplinas, novas matemáticas, como se haviam criado nos séculos anteriores.

Esta arremetida em direção ao "Abstrato", ainda que não pareça nada prática, tem por finalidade levar adiante a "Ciência".

A história tem mostrado que aquilo que nos parece pura abstração, pura fantasia matemática, mais tarde se revela como um verdadeiro celeiro de aplicações práticas.

Fonte: LISA - Biblioteca da Matemática Moderna

MATEMÁTICA - [RESUMO ESTRUTURAL]


http://ultranegociosonline.com/genio/matematica

A Matemática é uma ciência que relaciona o entendimento coerente e pensativo com situações práticas habituais. Ela compreende uma constante busca pela veracidade dos fatos através de técnicas precisas e exatas. Ao longo da história, a Matemática foi sendo construída e aperfeiçoada, organizada em teorias válidas e utilizadas atualmente.
Ela prossegue em sua constante evolução, investigando novas situações e estabelecendo relações com os acontecimentos cotidianos.

É considerada uma das ciências mais aplicadas em nosso cotidiano. Um simples olhar ao nosso redor e notamos a sua presença nas formas, nos contornos, nas medidas. As operações básicas são utilizadas constantemente, e os cálculos mais complexos são concluídos de forma prática e adequada de acordo com os princípios matemáticos postulados.

Possui uma estreita relação com as outras ciências, que buscam nos fundamentos matemáticos explicações práticas para suas teorias. Dizemos que a Matemática é a ciência das ciências.
Determinados assuntos ligados à Química, Física, Biologia, Administração, Contabilidade, Economia, Finanças, entre outras áreas de ensino e pesquisa, utilizam das bases matemáticas para estabelecerem resultados concretos e objetivos.

Atualmente a Matemática é subdividida, dessa forma constatou-se que ficaria mais fácil o seu aprendizado. Podemos organizá-la da seguinte forma:

Aritmética
Álgebra:

Conjuntos Numéricos
Equações
Equações Algébricas
Funções
Sistemas Lineares
Progressões
Análise Combinatória
Probabilidade e Estatística
Matemática Financeira

Trigonometria
Geometria Plana
Geometria Espacial
Geometria Analítica
Cálculos

Por Marcos Noé

segunda-feira, 14 de setembro de 2015

HISTÓRIA DA MATEMÁTICA




 A MATEMÁTICA NA ANTIGUIDADE
(Pré-História, Egito Antigo, Mesopotâmia e Grécia Antiga)



I – Pré-História

Considera-se como pré-história todo o período anterior a escrita. Neste período o homem era nômade, vivia em pequenos grupos, caçava, pescava e morava em cavernas. Não havia civilização como hoje nós a conhecemos.

·        Contexto Histórico

Durante a pré-história a sociedade era extremamente rígida. As pequenas comunidades eram formadas por clãs ou tribos comandadas por um líder ou chefe tribal. Não havia ascensão social, fora quando a autoridade do chefe era contestada e conseguia-se um novo líder por meio de lutas. Não havia forma alguma de política. Neste período havia a “lei do mais forte”.
Nesta sociedade primitiva, os homens caçavam e obtinham todo tipo de alimento. Ás mulheres estava destinado cuidar dos filhos e preparar o alimento que os homens traziam.
As comunidades (tribos) eram pequenas, mais ou menos quarenta pessoas por grupo, pois a alimentação era escassa e em pouco tempo o alimento acabava em determinado lugar. Por este motivo os grupos eram nômades, viviam se deslocando, procurando alimentos.
Também não existia um processo econômico propriamente dito, pois não existiam ainda os processos de troca de mercadorias nem a cunhagem de moedas. As pessoas sobreviviam com aquilo que obtinham a cada dia.
Com o passar do tempo, as civilizações propriamente ditas, começaram a se desenvolver no crescente fértil (rios Tigre e Eufrates na Mesopotâmia, Rios Indo e Ganges na Índia e Delta do Nilo na África) e também onde hoje está situada a América Central, com as culturas Asteca e Maia.
O rompimento da pré-história e por conseqüência, a criação das civilizações e das grandes cidades, só foi possível com o desenvolvimento da agricultura, em um processo que ficou conhecido como “Revolução Agrícola”. Esta foi a primeira grande revolução que mexeu com toda a humanidade. A segunda seria a “Revolução Industrial” e a terceira a “Revolução Tecnológica”.

·        Contexto matemático

Este período foi marcado por um baixíssimo nível intelectual, científico e matemático. Os aspectos sociais, políticos e econômicos acima citados, tiveram influência direta nesta pouca produção intelectual das sociedades. Mesmo assim, podemos citar algumas descobertas científicas e matemáticas.
Neste período houve a elaboração de um processo rudimentar de contagem: ranhuras em ossos, marcas em galhos, desenhos em cavernas e pedras. Também podemos citar aqui o processo que muitos utilizavam para relacionar quantidades, ou seja, para cada unidade obtida, era colocada uma pequena pedra em um saquinho.
Alguns povos, como os Sioux (tribo indígena americana) confeccionaram calendários pictográficos, desenhados em cavernas.
Destaca-se também a confecção de instrumentos e artefatos de guerra (primeiro em pedra, depois em bronze e ferro).
Como já comentamos anteriormente, foi somente após a revolução agrícola que as descobertas científicas e matemáticas tiveram um maior impulso. Esta revolução abriu o caminho não só para a criação das grandes civilizações, mas também para tudo aquilo que cerca esta construção.


II – Egito Antigo

            A civilização Egípcia se desenvolveu ao longo de uma extensa faixa de terra fértil que margeava o rio Nilo. Este rio prestou-se muito ao estabelecimento de grupos humanos. Suas margens férteis revelaram-se propícias à agricultura e, ainda, suas águas caudalosas facilitavam a abertura de canais de irrigação e a construção de diques. O estudo do Egito antigo está determinado entre 4.000 a.c. à 30 a.c. Houveram vários períodos dentro da história egípcia antiga, mas todos eles tiveram basicamente o mesmo aspecto social político e econômico, bem como matemático e científico. Somente com a invasão pelos romanos no século I a.c. é que ocorre um rompimento com sua cultura milenar.

·        Contexto Histórico

A sociedade Egípcia era extremamente rígida. A pirâmide social era fixa e composta desta maneira: Faraó (nobreza) – sacerdotes – escribas – camponeses - escravos. Havia uma administração estatal, centralizada no faraó que era o senhor absoluto de tudo que havia no Egito. O poder do faraó era fortalecido pela crença que o poder divino estava vinculado ao poder civil na pessoa do faraó, considerado um deus na terra.
Além do faraó que era o senhor absoluto, havia uma poderosa nobreza fundiária que cooperava na administração  e na exploração do trabalho dos camponeses. Apenas a família do faraó, os sacerdotes e os nobres tinham acesso a uma educação rudimentar. Alguns escribas também obtinham, mediante vontade do faraó, acesso à educação.
Em um primeiro momento a economia Egípcia estava baseada na agricultura e no trabalho escravo. Os camponeses cultivavam a terra e entregavam aos nobres e ao faraó. Eles só tinham direito a uma pequena parte dos produtos para sua subsistência.
Em um segundo momento a economia foi ampliada para um comércio de troca de mercadorias com outros povos que viviam em outras regiões, principalmente os mesopotâmicos.
Pelo fato de que a sociedade egípcia era uma sociedade extremamente fixa, centrada na pessoa do faraó, que não permitia uma maior abertura para as classes inferiores, as ciências também foram prejudicadas. Mas, mesmo assim houve um grande avanço científico e matemático neste período.

·        Contexto matemático

Um dos ramos da ciência que teve um avanço significativo foi a medicina. Os médicos (sacerdotes) egípcios possuíam um grande conhecimento na medicina, como bem comprovam as múmias de vários faraós descobertas nos dois últimos séculos, bem como o acesso a vários papiros.
Na matemática, também tivemos grandes avanços. A matemática egípcia sempre foi essencialmente prática. Quando o rio Nilo estava no período das cheias, começavam os problemas para as pessoas. Para resolver este problema foram desenvolvidos vários ramos da matemática. Foram construídas obras hidráulicas, reservatórios de água e canais de irrigação no rio Nilo. Procedeu-se a drenagem dos pântanos e regiões alagadas.
Começou-se também com uma geometria elementar e uma trigonometria básica (esticadores de corda) para facilitar a demarcação de terras. Com isto procedeu-se a um princípio de cálculo de áreas, raízes quadradas e frações. Também sabemos que os egípcios conheciam as relações métricas em um triângulo retângulo. O teorema de Pitágoras, na realidade, já era conhecido por povos bem mais antigos que os gregos.
No século XVIII d.c. foram descobertos vários papiros em escavações no Egito. Do ponto de vista matemático os mais importantes são os papiros de Moscou e os Papiros de Rhind. Estes papiros trazem uma série de problemas e coleções matemáticas em linguagem hieróglifa. Só foi possível a decifração desta linguagem, por Champolion, quando em 1799 uma expedição do exército Francês, sob o comando de Napoleão Bonaparte, descobriu perto de Rosetta, Alexandria uma pedra com escrita em três línguas: grego, demótico e hieróglifa. Somente com esta pedra foi possível decifrar a linguagem hieróglifa e traduzir estes papiros com grandes preciosidades matemáticas egípcias.
Outra ciência que teve um avanço muito grande neste período foi a astronomia. Os sacerdotes egípcios faziam cálculos astronômicos para determinar quando iriam ocorrer as cheias do Nilo. Baseados nestes cálculos eles construíram um calendário com 12 meses de 30 dias.
A construção das grandes pirâmides faz supor que o conhecimento matemático dos egípcios era muito mais avançado que o conhecido nos papiros. Talvez o fato da escrita ser muito difícil tenha sido um dos motivos que impediu este registro. Talvez, ainda, estes registros tenham sido feito em papiros que não chegaram aos nossos dias.
Podemos afirmar, com absoluta certeza, que a matemática egípcia foi um dos pilares da matemática grega, a qual foi a base para a nossa matemática moderna. Isto em geometria, trigonometria ou mesmo na astronomia.


III – Mesopotâmia

            A Mesopotâmia, que em Grego significa “terra entre rios”, situava-se no oriente médio, no chamado crescente fértil, entre os rios Tigre e Eufrates, onde hoje está situado o Iraque e a Síria, principalmente. Os povos que formavam a Mesopotâmia foram os Sumérios, Acádios, Amoritas, Caldeus e Hititas, os quais lutavam pela posse das terras aráveis.
           Por estar situado nesta região geográfica, a Mesopotâmia estava mais sujeita às invasões e conquistas de vários povos, ao contrário do que ocorreu no Egito. As duas civilizações, Egípcia e Mesopotâmica, desenvolveram-se no mesmo período. Mas, este desenvolvimento deu-se em separado, não havendo um intercâmbio de informações.
            As mesmas dificuldades que acarretaram o desenvolvimento das ciências no Egito foram a mola propulsora deste desenvolvimento nesta região. Porém ao contrário do que ocorria com as águas do rio Nilo, os períodos de cheia dos rios Tigre e Eufrates eram bastante irregulares, obrigando a realização de numerosas obras de irrigação e drenagem, com períodos de observação e desenvolvimento com uma maior dificuldade.

·        Contexto Histórico

A população residia em grandes cidades, governadas por um rei-sacerdote, chamado Patesi. Como esta região estava situada em uma região permanentemente sujeita a invasões, estas cidades eram extremamente militarizadas.
É desta região a elaboração do primeiro código escrito de leis. O código de Hamurabi, conhecido como “Lei de Talião”. Este código foi escrito pelo rei Hamurabi, em torno de 2.000 a.c. e privilegiava principalmente a nobreza, em detrimento do restante da população.
Durante o período entre 4.000 a.c. e 1200 a.c. foi inventada uma das primeiras formas conhecidas de escrita, a escrita cuneiforme e a fundação de grandes cidades (Lasash, Ur, Uruk e Babilônia). A escrita cuneiforme era realizada por meio de cunhas produzidas em tabletes de barro cozido, o qual garantia a sua permanência e conservação por um longo período de tempo, sendo que muitos tabletes chegaram até nossos dias, permitindo acesso àquela cultura. O processo de decifrar esta escrita só foi conseguido no século XIX por Henry Cheswike Rawlison e Georg Friedrich Grotenfrend.
Uma das tabelas mais importantes, sob o ponto de vista matemático, foi a chamada tábua “Plimpton 322”, a qual traz uma série de informações matemáticas, entre elas a relação entre os três lados de um triângulo.
Assim como a sociedade egípcia, a sociedade mesopotâmica tinha sua pirâmide social extremamente rígida, não permitindo a mobilidade social. Esta pirâmide tinha duas camadas. A camada mais alta era formada pelo rei e seus familiares, seguidos por uma nobreza fundiária, sacerdotes e ricos mercadores. Na base da sociedade estavam os camponeses e os escravos. Esta sociedade era altamente militarizada e extremamente cruel para com os povos dominados por meio de guerras ou da cobrança de impostos.
Com o advento do código de Hamurabi esta sociedade foi dividida em três grupos distintos: Homens livres privilegiados (grandes proprietários de terra, comerciantes e sacerdotes); Homens livres (artesãos, pequenos comerciantes e servidores no palácio real) e Escravos (prisioneiros de guerras ou pessoas que não conseguiam pagar as suas dívidas).
A economia estava baseada na agricultura e no comércio de trocas. Visto a localização geográfica da região que facilitava o contato entre os povos conhecidos da época.
Não havia um processo político como conhecemos hoje, pois o rei detinha o poder absoluto e total.

·        Contexto matemático

A ciência e, por conseqüência, a matemática mesopotâmica teve um grande desenvolvimento por parte dos sacerdotes que detinham o saber nesta civilização. Assim como a matemática Egípcia, esta civilização teve uma matemática e/ou ciência extremamente prática. As matemáticas orientais surgiram como uma ciência prática, com o objetivo de facilitar o cálculo do calendário, a administração das colheitas, organização de obras públicas e a cobrança de impostos, bem como seus registros.
As águas dos rios Tigre e Eufrates proporcionavam facilidades para o transporte de mercadorias, o que ajudou a desenvolver um processo de navegação.
Foram desenvolvidos nestes rios grandes projetos de irrigação das terras cultiváveis e a construção de grandes diques de contenção, abrindo assim o caminho para o desenvolvimento de uma engenharia primitiva.
Procedeu-se ao desenvolvimento de uma astronomia rudimentar para o cálculo do período de cheias e vazantes dos rios, mesmo que estes períodos não fossem regulares como os do rio Nilo no Egito.
Os Babilônicos (assim também eram chamados os povos mesopotâmicos) tinham uma maior habilidade e facilidade para efetuar cálculos, talvez em virtude de sua linguagem ser mais acessível que a egípcia. Eles tinham técnicas para equações quadráticas e bi-quadráticas, além de possuírem fórmulas para áreas de figuras retilíneas simples e fórmulas para o cálculo do volume de sólidos simples. Sua geometria tinha suporte algébrico. Também conheciam as relações entre os lados de um triângulo retângulo e trigonometria básica, conforme descrito na tábua “Plimpton 322”.
Ao contrário dos Egípcios, que tinham um sistema posicional de base 10, os babilônicos possuíam um sistema posicional sexagesimal bem desenvolvido, o qual trazia enormes facilidades para os cálculos, visto que os divisores naturais de 60 são 1,2,3,4,5,6,10,12,15,20,30,60, facilitando o cálculo com frações.
Por tudo isto que foi descrito, a matemática Babilônica tinha um nível mais elevado que a matemática Egípcia.
Pelo fato da Mesopotâmia estar situada no centro do mundo conhecido da época, o que propiciava grandes invasões e muito contato com outros povos, ela teve um papel muito grande no desenvolvimento da matemática de um povo que teve um papel muito importante na história: o povo Grego. Graças a este contato com o povo Grego, muito desta matemática chegou até os nossos dias.


IV – Grécia Clássica

            Consideramos o período compreendido entre 2.000 a.c. até 35 a.c. como sendo o período clássico ou período de ouro do povo Grego. Período este que se encerra com o domínio da Grécia pelos Romanos.
            A civilização Grega foi formada por muitos povos que se originaram da Europa central e da Ásia. Antes, porém, de comentar sobre estes povos convém fazer um breve comentário sobre um povo que teve uma influência muito grande sobre a construção da Grécia e de sua cultura: os Cretenses.
            Os Cretenses, habitantes da ilha de Creta, desde 3.000 a.c., com expressão maior entre 2.000 a.c. à 1.500 a.c., notabilizaram-se pelo comércio marítimo, artesanato, arte e a influência sobre os Gregos. Tiveram um comércio muito grande com o Egito, Fenícia e a Síria. As transações comerciais eram registradas em papiros com uma escrita acessível aos mercadores. Este contato com os demais povos possibilitou um intercâmbio muito grande com as demais culturas e propiciou avanços matemáticos e científicos ampliando os conhecimentos tecnológicos do período, haja vista as ruínas de banheiros e sistemas de esgotos descobertos em escavações.
            O povo da ilha de Creta tinha uma sociedade original e desenvolvida, dando lugar de destaque à mulher, ao contrário das demais civilizações do período. Registros indicam que não havia escravidão.
            Quando a ilha de Creta, mais precisamente a cidade de Cnossos,  foi ocupada pelos Aqueus, esta civilização foi subjugada. Apesar de conquistadores, os Aqueus absorveram a cultura Cretense.
            A civilização grega, propriamente dita, foi formada nos séculos XX a.c. a XII a.c. por invasões de Aqueus, Jônios, Eólios e Dórios.

·        Contexto Histórico

A Grécia antiga é considerada como o berço da civilização ocidental. Mas, na realidade, vimos que anteriormente a ela desenvolveu-se a civilização cretense. Como a Grécia antiga era chamada de Hélade, este povo foi denominado, na antiguidade, “Helenos”.
A história da Grécia pode ser dividida em quatro períodos:

·        Período Homérico (Séculos XII até VIII a.c.)

Pouco se sabe sobre este período. Sabe-se apenas que ele começou com a invasão dos Dórios. As poucas informações são os vestígios arqueológicos obtidos em escavações e os poemas “Ilíada” e “Odisséia” de Homero.

·        Período Arcaico (Séculos VIII até VI a.c.)

Este período foi marcado por uma grande expansão marítima e comercial pelo mediterrâneo, estreitando os laços econômicos com os demais povos, tornando a atividade comercial a mais importante da economia Grega. Esta atividade consistia em comércio exterior, com a exportação de mármore, azeite, vinhos, frutas e na importação de trigo, metais, madeiras, tecidos. Com este crescimento da nova atividade, uma poderosa classe de comerciantes surgiu. Esta classe passou a lutar por seus direitos, principalmente políticos, visto que eram as famílias nobres que estavam no poder. Com isto, ocorreram grandes modificações nas formas políticas. A maior delas foi a criação da democracia na cidade-estado de Atenas. Mas, mesmo a democracia era excludente, visto que escravos, estrangeiros e mulheres não podiam participar das decisões. Esta economia também estava baseada no emprego, de forma predominante, da mão-de-obra escrava. Os escravos eram obtidos de três maneiras: nascimento, guerras de conquista e condenação por dívidas.

·        Período Clássico – Época de Ouro (Séculos VI até IV a.c.)

Durante este período a civilização grega atingiu seu apogeu, com a estabilização da democracia, obras dos principais artistas e filósofos, bem como o desenvolvimento do estudo da matemática e ciências.
Podemos citar, deste período, Demócrito (460-370 a.c.) que foi o primeiro a afirmar a existência do átomo como elemento indivisível e Hipócrates (460-377 a.c.) que, no tratamento médico, defendeu uma análise das doenças a partir dos sintomas apresentados pelo paciente, em substituição às crenças e superstições.
Este período também foi marcado por guerras contra os Persas e também guerras internas entre as cidades-estado, principalmente a guerra entre Atenas e Esparta.

·        Período Helenístico (Séculos IV até I a.c.)

Este período começa com a dominação da Grécia, enfraquecida pelas guerras internas e contra os Persas, pelos Macedônios. Em 308 a.c. Filipe da Macedônia derrotou os exércitos Gregos. A dominação foi mantida por seu filho, Alexandre Magno, o qual dominou o mundo conhecido da época, chegando até partes da Índia. Alexandre havia sido aluno de Aristóteles e por este motivo, mesmo com a dominação militar, as ciências e as artes continuaram progredindo, mas em ritmo mais reduzido. Com Alexandre Magno ocorreu a fusão da cultura Grega com a oriental, o que auxiliou em muito a expansão das ciências e da matemática, principalmente em contatos com Árabes e Hindus.
Com a morte de Alexandre, seu império foi dividido entre seus três generais: Antígono (Grécia e Macedônia), Ptolomeu (Egito) e Seleuco (Mesopotâmia, Síria e Pérsia).
No século I a.c. todas estas regiões foram dominadas pelos romanos. Com esta dominação a cultura grega entrou em declínio, culminando este declínio com o fechamento da escola de Atenas pelo imperador romano Justiniano.
Durante todos estes períodos a sociedade Helena apresentava diferentes modos, em função de suas estruturas políticas das suas cidades-estado. Mas, existiam semelhanças entre elas, tais como: família patriarcal, conceitos de cidadania, sociedade fechada, sem possibilidade de mobilidade social.
No âmbito da política, o grande desenvolvimento foi a democracia, primeiro com Drácon, depois Sólon e por fim Clístenes. Mas, foi somente com Péricles (462-429 a.c.) que a democracia se consolidou. Mas, esta democracia era apenas para os cidadãos. Estrangeiros, mulheres e escravos estavam proibidos de participar da vida política.
Podemos afirmar, com certeza, que a liberdade de pensamento da civilização Grega contribuiu para o desenvolvimento das ciências, em especial, a matemática. O intercâmbio de idéias e conhecimento entre o oriente e o ocidente frutificou nas inúmeras bibliotecas que se formaram, como a de Alexandria (Egito), que possuía cerca de 400 mil volumes.

·        Contexto matemático

A base da revolução matemática exercida pela civilização Grega partiu de uma idéia muito simples. Enquanto Egípcios e Babilônicos perguntavam: “como”? os filósofos gregos passaram a indagar: “por quê”? Assim, a matemática que até este momento era, essencialmente, prática, passou a ter seu desenvolvimento voltado para conceituação, teoremas e axiomas.
A matemática, através da história, não pode ser separada da astronomia. Foram as necessidades relacionadas com a irrigação, agricultura e com a navegação que concederam à astronomia o primeiro lugar nas ciências, determinando o rumo da matemática.
Dois fatores estimularam e facilitaram o grande desenvolvimento da ciência e da matemática pelos filósofos gregos: a substituição da escrita grosseira do antigo oriente por um alfabeto fácil de aprender e a introdução da moeda cunhada, o que estimulou ainda mais o comércio.
A matemática moderna teve origem no racionalismo jônico, e teve como principal estimulador Tales de Mileto, considerado o pai da matemática moderna. Este racionalismo objetivou o estudo de quatro pontos fundamentais: compreensão do lugar do homem no universo conforme um esquema racional, encontrar a ordem no caos, ordenar as idéias em seqüências lógicas e obtenção de princípios fundamentais. Estes pontos partiram da observação que os povos orientais tinham deixado de fazer todo o processo de racionalização de sua matemática, contentando-se, tão somente, com sua aplicação.
Neste período começam a surgir as primeiras divisões nas ciências. Na Grécia surgem dois grupos distintos de filósofos: os Sofistas e os Pitagóricos, os quais passam a analisar as ciências de dois modos diferentes.
             
Os Sofistas abordavam os problemas de natureza matemática como uma investigação filosófica do mundo natural e moral, desenvolvendo uma matemática mais voltada à compreensão do que à utilidade. É o começo da abstração matemática, em detrimento da matemática essencialmente prática.
Os Pitagóricos, sociedade secreta criada por Pitágoras de Samos, enfatizavam o estudo dos elementos imutáveis da natureza e da sociedade. O chefe desta sociedade foi Arquitas de Tarento. Os Pitagóricos estudavam o quadrivium (geometria, aritmética, astronomia e música). Sua filosofia pode ser resumida na expressão “tudo é número”, com a qual diziam que tudo na natureza pode ser expresso por meio dos números. Pitágoras dizia que: “tudo na natureza está arranjado conforme as formas e os números”. Aos Pitagóricos (Pitágoras, principalmente) podemos creditar duas descobertas importantes: o conceito de número irracional por meio de segmentos de retas incomensuráveis e a axiomatização das relações entre os lados de um triângulo retângulo (teorema de Pitágoras), que já era conhecido por babilônicos e egípcios.
Paralelo a isto, os matemáticos gregos do período clássico começam a trabalhar com o princípio da indução lógica (apagoge), que é o início da axiomática, a qual foi desenvolvida por Hipócrates. Os três problemas que deram início ao estudo da axiomática foram: trissecção de um ângulo, duplicação do volume do cubo (problema délico) e quadratura do círculo.
Com as campanhas de Alexandre, o grande, houve um avanço rápido da civilização grega em direção ao oriente. Assim, a matemática grega sofreu as influências dos problemas de administração e da astronomia desenvolvidas no oriente. Este contato entre as duas matemáticas foi extremamente importante e produtivo, principalmente no período de 350 a 200 a.c.. Neste contexto, Alexandria torna-se o centro cultural e econômico do mundo helenístico.
Durante todo o período grego, vários filósofos e matemáticos deram sua contribuição ao desenvolvimento da matemática. Neste período surgem os cientistas, homens que dedicavam sua vida à procura do conhecimento e que por isso recebiam um salário. Será citado, agora, um breve comentário sobre a contribuição dos matemáticos considerados os mais importantes e influentes deste período.

·        Euclides (306?-283? a.c.)

Seu trabalho mais famoso é a coleção “Os elementos”, obra em 13 volumes, que contém aplicações da álgebra à geometria, baseados numa dedução estritamente lógica de teoremas, postulados, definições e axiomas. Até os dias de hoje, este é o livro mais impresso em matemática.

·        Arquimedes (287 – 212 a.c.)

É considerado o maior matemático do período helenístico e de toda antiguidade. Suas maiores contribuições foram feitas no campo que hoje denominamos “cálculo integral”, por meio do seu “método de exaustão”. Arquimedes também deu importante contribuição na mecânica e engenharia, com o desenvolvimento de vários artefatos, principalmente militares. Foi morto por um soldado romano quando da queda de Siracusa.

·        Apolônio de Perga (247-205 a.c.)

Com Apolônio há uma volta à tradicional geometria grega. Ele escreveu um tratado de oito livros sobre as cônicas (parábola, elipse e hipérbole), introduzidas como seções de um cone circular.

·        Ptolomeu (150 d.c.)

Publicou o “Almagesto”, obra de astronomia com superior maestria e originalidade. Nesta obra encontra-se a fórmula para o seno e o cosseno da soma e da diferença de dois ângulos e um começo da geometria esférica.

·        Nicómaco de Gerasa 

Publicou “Introdução à aritmética”, que é a exposição mais completa da aritmética pitagórica. Muito do que sabemos sobre Pitágoras provém desta publicação.

·        Diofanto

Publicou “Arithmética”, a qual recebeu uma forte influência oriental. Este trabalho trata da solução e análise de equações indeterminadas.
           Com o domínio da Grécia e do oriente pelos romanos, estas regiões tornaram-se colônias governadas por administradores romanos. A estrutura econômica do império romano permanecia baseada na agricultura. Com o declínio do mercado de escravos a economia entrou em decadência e existiam poucos homens a fomentar uma ciência, mesmo medíocre.
            Podemos, então, determinar uma relação entre a crise da matemática e a crise do sistema social, pois a queda de Atenas significou o fim do império da democracia escravagista. Esta crise social influenciou a crise nas ciências que culminou com o fechamento da escola de Atenas, marcando com isto o fim da matemática grega clássica.

            Podemos observar que as descobertas matemáticas estão relacionadas com os avanços obtidos pela sociedade, tanto intelectuais como comerciais. Se no princípio a matemática era essencialmente prática, visto que as sociedades eram rudimentares, com o desenvolvimento destas sociedades a matemática também evoluiu, passando de uma simples ferramenta que auxiliava aos problemas práticos para uma ciência que serviu como chave para analisar o mundo e a natureza em que vivemos.
            Todas as descobertas matemáticas realizadas pelos povos pré-históricos, egípcios e babilônicos serviram como subsídio para a matemática desenvolvida pelos gregos. Esta matemática grega foi, e continua sendo, a base de nossa matemática. Todo o desenvolvimento tecnológico obtido em nossos dias tem como ponto de partida a matemática grega.
           Assim, sem a axiomatização desenvolvida pelos gregos, não haveria o desenvolvimento da matemática abstrata e dos conceitos, postulados, definições e axiomas tão necessários à nossa matemática.
            Da matemática da antiguidade, fundamental a nós hoje, podemos citar: processos de contagem, numeração, trigonometria, astronomia, geometria plana e volumes de corpos sólidos, sistema sexagesimal, equações quadráticas e bi-quadráticas, relações métricas nos triângulos retângulos, seções cônicas e o método de exaustão, que foi o germe do cálculo integral.



BIBLIOGRAFIA


BARBEIRO, Heródoto. Et alli. História. Ed. Scipione. 2005
BERUTTI, Flávio. História. Ed. Saraiva. 2004.
BOYER, Carl B. História da matemática. 2º ed. SP. Edgard Blucher, 2003.
EVES, Howard. Introdução à história da matemática. 2º ed. UNICAMP,  2002.
STRUIK, História concisa das matemáticas. Gradiva. 1989.

Extraído do Portal Só matemática

domingo, 13 de setembro de 2015

O Pi


O que é o Pi?

A relação que existe entre o perímetro de uma circunferência e o seu diâmetro é uma das grandes constantes universais conhecidas pelo homem, a que se deu o nome de Pi. Isto quer dizer que se pudéssemos ter uma circunferência de um metro de diâmetro construída com um fio, cortássemos o fio e o estendêssemos no chão para formar um segmento, este teria um comprimento exactamente igual ao valor de Pi (3,14…).

Um pouco de história…

A primeira referência ao valor de pi aparece na Bíblia: "Fez logo um mar de metal fundido, de dez cotovelos de ponta a pontaos, de uma borda até à outra borda, redondo ao redor, e de cinco côvados ao alto; e um cordão de trinta côvados o cingia, em redor." Aqui, o valor de p é 3, bastante inexacto.
Desde sempre, este número mágico despertou a atenção dos estudiosos. Os historiadores calculam que, desde 2000 a.C., os homens têm consciência de que a razão entre a circunferência e o seu diâmetro é igual para todos os círculos.
 
A primeira utilização de um símbolo para representar a razão entre o perímetro de um círculo e o seu diâmetro remonta a 1689, quando J. Cristoph Sturm, no seu livro Mathesis enucleata, utilizou para isso a letra e. Foi William Jones, em 1706, que utilizou a letra grega. Mas porque escolheu esta letra? O motivo era que a letra p, primeira letra da palavra grega perimetron (perímetro), correspondia à letra no alfabeto grego.
 
Curiosidade

Escolha uma sequência de algarismos, um número que lhe seja familiar (número de telefone, o número do seu bilhete de identidade…).
Experimente procurar a sequência que escolheu no número, para tal consulte a página:

http://www.atractor.pt/fromPI/PIsearch.html

A procura é feita pelo computador nos primeiros 2 147 483 000 algarismos do Pi e, aí, existe uma forte probabilidade de encontrar o número que escolheu, se este não tiver mais que nove algarismos.